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ABSTRACT

A robust optimization has emerged as a powerful tool for managing un-
certainty in many optimization problems. This method was adapted in
portfolio optimization to resolve the sensitivity issue of the mean-variance
model to its inputs (i.e. mean vector and covariance matrix of returns).
The solution provided by this framework presented here can be very
sensitive to the choice of uncertainty sets, since the optimal portfolios
are determined under "the worst-case objective value" of the inputs in
their uncertainty sets. One potential consequence of this emphasis on
the worst-case is that the decisions are highly influenced by extreme sce-
narios in the uncertainty sets. The emergence of the extreme scenarios
in the uncertainty sets can be because there are extreme observations in
the data. These extreme observations frequently occur in financial sector.
We proposed to tackle this issue by considering robust estimators that are
incorporated to the uncertainty sets about unknown parameters. They
showed both in simulated and empirical investigations that this strategy
can lead to the construction of portfolios with superior out-of-sample
performance in comparison to the mean-variance portfolio (classic) and
robust portfolio optimization.

Keywords: Mean-variance portfolio, robust portfolio optimization, ro-
bust estimators, uncertainty sets, block bootstrap.
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1. Introduction

Sixty four years ago, Markowitz (1952) developed a portfolio selection the-
ory that became the foundation of financial economics for asset management
and revolutionized investment practice. It is assumed that random vector
r = (r1, r2, . . . . . . , rp)

T denotes random returns of the p risky assets with mean
vector µ and covariance matrix Σ. A portfolio is defined to be a list of weights
wi for the assets i = 1, . . . , p that represent the amount of capital to be in-
vested in each asset. We assumed that

∑p
i=1 wi = 1 meaning that capital is

fully invested.

For a given portfolio w , the expected return and variance are respectively
given by: E(wT r) = wTµ and V ar(wT r) = wTΣw. Then, the classical mean-
variance (MV) portfolio models of Markowitz are formulated mathematically
as the optimization problem:

max
w

wTµ− γ

2
wTΣw

s.t : wT e = 1 (1)
w ≥ 0

where µ ∈ Rp is the vector of expected return, Σ ∈ Rp×p is the covariance
matrix of return, and w ∈ Rp is the vector of portfolio weight. Restriction
w > 0 means that short-selling is not allowed. Parameter γ can be interpreted
as a risk aversion, since it takes into account the trade-off between risk and
return of the portfolios.

For the empirical implementation, the MV portfolio (classic) is the solution
to optimization problem (1):

max
w

wT µ̂− γ

2
wT Σ̂w

s.t : wT e = 1 (2)
w ≥ 0

where µ̂Tw is the sample mean of portfolio returns, wT Σ̂w is the sample vari-
ance of portfolio returns. Suppose the number of return is n then the sample
mean of returns can be calculated as µ̂ = 1

n

∑n
i=1 ri and the sample covariance

matrix of asset returns can be calculated as Σ̂ = 1
n

∑n
i=1(ri − µ̂)(ri − µ̂)T . We

could generate an optimal portfolio by choosing various values of risk aversion
parameter.

According to Lauprete (2001), solving problem (2) can be expected optimal
if the data are multivariate normal distributed. In actual financial market, the
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empirical distribution of asset returns may in fact asymmetry therefore model
(2) are very erroneous (see Best and Grauer (1991); Broadie (1993); (Chopra
and Ziemba, 1993); Ceria and Stubbs (2006)).If unchecked, this phenomenon
skews the optimizer towards extreme weights that tend to perform poorly in
the real world. One solution that has been proposed is to use robust optimiza-
tion (Rob.Opt). This method has emerged as a powerful tool for managing
uncertainty in many optimization problems. Robust optimization was devel-
oped to solve problems where there is uncertainty in the decision environment,
and therefore is sometimes referred to as uncertain optimization (Ben-Tal and
Nemirovski (1998)). This study was adapted in portfolio optimization to re-
solve the sensitivity issue of the MV model to its inputs. Goldfarb and Iyengar
(2003) introduce a way to formulate robust optimization problems as second-
order cone programs using ellipsoidal uncertainty sets, and similar approaches
are investigated by Tütüncü and Koenig (2004), Garlappi et al. (2004), Fas-
trich and Winker (2009), Lu (2011) and Supandi et al. (2016) apply this idea
in different ways. Meanwhile Fabozzi et al. (2007) provide a comprehensive
overview for this framework.

In the Rob.Opt framework, input parameters are modeled as unknown, but
belong to bound uncertainty sets that contain all, or most, values of uncertain
inputs. Furthermore, robust optimization determines the optimal portfolio un-
der "the worst-case objective value" of the inputs in their uncertainty sets
(Fabozzi et al. (2007)). The focus on the worst-case objective value in ro-
bust optimization is a source of frequent criticism. Despite the advantages we
mentioned in the previous paragraph, Rob.Opt provides a conservative frame-
work to determine an optimal portfolio under model parameter uncertainty. As
stated by Zhu (2008) such a framework tends to be too pessimistic and unable
to achieve high portfolio returns, especially for less risk-averse investors. In
addition, the solution provided by this framework can be very sensitive to the
choice of uncertainty sets. One potential consequence of this emphasis on the
worst-case is that the decisions are highly influenced by extreme scenarios in
the uncertainty sets. As this is not always desirable, Bertsimas and Sim (2004)
study this cost of robustness as a function of the level of conservatism.

The emergence of the extreme scenarios in the uncertainty sets can be be-
cause there are extreme observations in the data. These extreme observations
frequently occur in the financial sector; such observations are called outliers or
sometimes referred to as contaminants. To reduce the influence of the outliers
on the Rob.Opt portfolio, we proposed to use robust estimators in a construc-
tion of the uncertainty sets. A robust estimator is one that gives meaningful
information about asset returns even when the empirical (sample) distribution
deviates from the assumed (normal) distribution (see Marona et al. (2006),
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Huber and Ronchetti (2009) ). The focus on robust estimation is to produce
efficient estimators, which are less sensitive to outliers and might result in
more robust portfolios. Hence, one could use a robust estimators generated us-
ing robust estimation to determine uncertainty sets, from which the worst-case
parameters are chosen for robust optimization.

For this reason, this paper studies the effectiveness of robust optimiza-
tion combined with robust estimation. In addition, it asks whether combining
robust optimization with robust estimation can do better performance than
previous techniques (Classic and Rob.Opt). We started by giving a formal
description of the problem. Next, we briefly recalled the robust portfolio opti-
mization of Tütüncü and Koenig (2004) and robust estimation i.e. S-Estimators
of Davies (1987). Thereafter, we described how to integrate robust estimation
to robust portfolio optimization. Finally, we computed the out-of-sample per-
formance of the proposed method by extensive simulated and empirical inves-
tigations on various data sets.

2. Robust Portfolio Optimization

Many decision problems with uncertainty can be formulated as optimization
problems. In recent years, robust optimization (Rob.Opt) has emerged as a
powerful tool for managing uncertainty in such optimization problems (Ben-
Tal and Nemirovski (1998), Ben-Tal and Nemirovski (2002)).

This method was adapted in portfolio optimization to resolve the sensitivity
issue of the MV portfolio to its inputs. One of the essential elements of Rob.Opt
model is the uncertainty sets. The uncertainty sets, say U , represent the set of
possible scenarios or realizations for parameters µ and Σ. When parameters are
uncertain and must be estimated, uncertainty sets can represent or be formed
by differences of opinions (see Fabozzi et al. (2007)). For example, they could
be discrete sets representing a collection of estimates for the unknown input
parameters. In relation to this, Goldfarb and Iyengar (2003) consider ellipsoidal
uncertainty sets, while, Tütüncü and Koenig (2004) assume that uncertainty
mean return vector µ and uncertainty covariance matrix Σ of the asset return
belong to the uncertain sets of the following forms:

Uµ = {µ : µL ≤ µ ≤ µU} (3)

and
UΣ = {Σ : ΣL ≤ Σ ≤ ΣU ,Σ � 0} (4)
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Here, µL and µU are the lower bound and upper bound of mean return
respectively, whereas ΣL and ΣU denote the lower bound and upper bound
of covariance matrix. The restriction Σ � 0 indicates that Σ is a symmetric
positive semidefinite matrix.

Given the uncertainty set Uµ and UΣ, the robust versions of the MV portfolio
(2) can be expressed as follows

max
w

min
µ∈Uµ

[µTw]− γ

2
max
Σ∈UΣ

[wTΣw]

s.t : wT e = 1

w ≥ 0 (5)
µ ∈ Uµ
Σ ∈ UΣ

The robust portfolio optimization can be determined by first fixing the
worst-case input data in the considered uncertainty sets. Since w > 0, the
objective value of the problem in (5) is minimized when each element of vector
µ is at its lower bound, i.e., when µ = µL. Consider the relaxation of the
second problem obtained by ignoring the positive semi-definiteness constraint
Σ � 0. For this relaxation, since wiwj > 0 for all i and j, wTΣw = wi,jσijwiwj
will be maximized when all σij attain their largest feasible values, i.e., when
Σ = ΣU . Since ΣU is assumed to be a positive semidefinite matrix, it must
be optimal for the unrelaxed problem as well (see for detail in Tütüncü and
Koenig (2004).

In this scenario, the robust portfolio optimization given in (5) reduces to
the following maximization problem:

max
w

(µL)Tw − γ

2

[
wTΣUw

]
s.t : wT e = 1 (6)

w ≥ 0

3. Improved Robust Portfolio Optimization

We have seen in the previous section how to write the robust portfolio
optimization (Rob.Opt) problem. In this formulation, we needed only a lower
bound of Uµ and upper bound of UΣ which are entered into the MV model (see
formula [4]). Since the worst-case based approach can be adversely influenced
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by outliers in the data, uncertainty sets need to be carefully chosen. This
is why we proposed to include robust estimators in construction of Rob.Opt
model. Robust estimators are one of the most effective approaches to mitigate
the impact of outliers in data set.

We enriched the robust portfolio optimization model of Tütüncü and Koenig
(2004) from two perspectives. First, we developed block bootstrap to determine
the uncertainty sets of parameters (see Efron and Tibshirani (1993)). Second,
as stated by Zhu (2008) this framework tends to be too pessimistic and unable
to achieve high portfolio returns therefore we introduced robust estimators for
reducing the weakness of Rob.Opt model. Spesifically we developed the robust
portfolio optimization model of Tütüncü and Koenig (2004) with S-Estimators
as proposed by Davies (1987).

One of the robust estimators for location and scale with multivariate data
is an S-Estimators. According to Rocke (1996), an S-estimate of multivariate
location and shape is defined as µ vector and positive definite symmetric (PDS)
matrix Σ which minimize objective function:

min |Σ| (7)

s.t :
1

n

n∑
i=1

ρ(di) = b0 (8)

where di = (ri − µ)TΣ−1(ri − µ) and ρ is the loss function and it should have
the following properties:

1. ρ is symmetric, has a continuous derivative ψ and ρ(0) = 0

2. There exists a finite constant c0 > 0 such that ρ is strictly increasing on
[0, c0] and constant on [c0,∞]

Constant b0 is generally chosen to be b0 = ερ(c0) for breakdown ε. Often a
value of ε near 0.5 is used to obtain very high breakdown.

Let ψ(d) = ρ′(d) , u(d) = ψ(d)/d and di = (ri − µ)TΣ−1(ri − µ) then an S-
estimate θ̂ = (µ̂, Σ̂) satisfies the following estimating equations (Lopuha, 1989
):

1/n

n∑
i=1

u(di)(ri − µ̂) = 0 (9)

1/n

n∑
i=1

pu(di)(ri − µ̂)(ri − µ̂)T − ν(di)Σ̂ = 0 (10)
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where υ(d) = ψ(d)d − ρ(d) + b0. More details about S-Estimators can be
found in the references, for instance Davies (1987), Lopuhaa (2009) and Rocke
(1996). The main difference between our proposed model and those proposed by
Tütüncü and Koenig (2004) is that we used the S-Estimators as the estimation
in the construction of uncertainty sets of parameters. We give the detail of the
procedure in the following algorithm.

Algorithm 1. Uncertainty Sets of Parameters by Using a Block Bootstrap
Methods

1. Choose the block length (l). In our experiment, we used the non - over-
rlapping block. We divided the data into n/l blocks, in which block 1 is
r1, r2, . . . , rl, block 2 is rl+1, rl+2, . . . , r2l, . . . , etc,

2. Resample the blocks and generate the bootstrap sample

3. Compute the S estimators (Equation 9) from bootstrap data and call it
µ̂Sest and Σ̂Sest ,

4. Construct the empirical distribution of estimators by repeating step 2
and step 3 B times and sort the bootstrap estimators from the smallest
to largest,

5. Determine the (1 − α)100% percent quantile of the distribution of esti-
mators.

From algorithm 1, the uncertainty sets are defined as

Uµ =
{
µ : µ̂LSest ≤ µ ≤ µ̂USest

}
(11)

And
UΣ =

{
Σ : Σ̂LSest ≤ Σ ≤USest,Σ � 0

}
(12)

Given the uncertainty sets of mean vector (11) and covariance matrix (12,
then our proposed modified robust optimization (Mod.Rob) can be defined as
follows:

max
w

(µ̂Lsest)
Tw − γ

2

[
wT Σ̂Usestw

]
s.t : wT e = 1 (13)

w ≥ 0
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4. Simulation Study

We considered that the returns follow a multivariate normal distribution
most of the time but there is a small probability that the returns follow a dif-
ferent distribution. That is, we assumed that the true asset-return distribution
is:

M = (1− ε)Np(µ,Σ) + εD (14)

Here, M can be considered as a mixed distribution between a multivariate
normal distribution in dimension p : Np(µ,Σ) and contamination distribution
D. Whereas ε ∈ (0, 1) is a number representing the proportion of contamina-
tion. Furthermore, we would consider a case where D = Np(µd,Σd) meaning
that D is also a multivariate normal distribution but with different parameters.
Specifically, we assumed that µd = −µ and Σd = Σ.

In order to demonstrate the effect of contamination on the computation of
Rob.Opt portfolio, we conducted the following experiment. If there are ten
risky assets and their true parameters, mean vector µ (×10−3) is

µT =
(

0.80 2.66 1.28 3.23 1.14 5.43 3.91 2.34 2.95 4.13
)

and covariance matrix Σ (×10−3) is

Σ =



5.22 1.97 1.55 1.44 1.70 0.71 1.66 1.96 1.49 0.71
6.52 2.16 2.19 3.28 1.11 1.98 2.05 2.22 1.42

4.27 2.47 2.14 0.76 1.34 1.37 1.85 0.74
3.02 1.79 0.53 1.15 1.18 1.73 0.75

7.80 1.01 1.98 2.04 2.04 1.57
4.86 0.87 0.82 0.71 0.18

3.24 2.58 1.48 0.53
3.08 1.51 0.54

3.43 0.69
4.2114



We generated two different data sets with the proportions of the data de-
viating from normality ε equal to 0% and 5%. This allows us to study how
the different portfolios change when the asset-return distribution deviates from
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the normal distribution. We generated 200 return samples (we can consider
the samples as 200 weekly returns of the ten assets). From these samples, we
calculated the optimal robust portfolio by using Equation 2, 6 and 13.

We repeated the process with various types of risk aversion ( γ = 1, 10,
100 and 1000). As the name indicates, it is a measure of the investors’ risk
averseness. It can be different for each investor, and even for an investor it can
change through time. The greater the γ , the more risk averse the investor has.
(Engels (2004))

Next, we used a rolling horizon procedure similar to that in DeMiguel et al.
(2013) to compare the performance of our proposed model with Classic and
Rob.Opt strategy. The detail of the method can be defined as follows:

Algorithm 2. Rolling Horizon Procedure

1. Choose the length of estimation window K where K < n and n is a total
number of sample in a data set;

2. Compute the optimal robust portfolio for each strategy, call it w∗classic,
w∗rob.opt and w

∗
mod.rob;

3. Calculate the out-of-sample excess return in period t + 1 i.e. r̂t+1 =
(w∗t )T rt+1 where K ≤ t ≤ 200;

4. Repeat step 2 for the next window by including the next data point and
drop the first data point of the estimation window (we assumed that
investors would rebalance their portfolios every one week);

5. After collecting the time series of the excess returns r̂t+1, calculate the
out-of-sample mean, standard deviation, Sharpe ratio of excess returns
and turnover for each strategy.

To perform the out-of-sample performances, several values have to be set.
Firstly, we chose an estimation window of K = 90 observations, since we gen-
erated n = 200 return samples then we had 110 observations for out-of-sample
evaluation . Secondly, block bootstrap method was used by setting number of
bootstrap B = 500 and length of bootstrap l = 10. We used algorithm 1 to
compute the uncertainty sets by using block bootstrap percentil with α = 0.10.
Thirdly, because we incorporated robust estimators (i.e. S-Estimators) in the
construction of uncertainty sets of parameters, we had to determine what type
of loss function we would use. In this case, we computed S-Estimators based
on Tukey’s biweight function.
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4.1 Performance with Simulated Data

Table 1 reports the results of MV portfolio (Classic), robust optimization
portfolio (Rob.Opt) and modified robust optimization portfolio (Mod.Rob) at
different risk aversions when applied to the simulated data. The first column
of Table 1 displays the criteria of performances i.e. mean, standard deviation
(Std Dev), Sharpe Ratio (SR) and turnover (TO). The second, third and fourth
columns show the performance of three portfolios in uncontaminated data (no
outlier). Meanwhile, the last three columns display the performance of Classic,
Rob. Opt and Mod.Rob portfolio for contaminated data (ε = 0.05).

Table 1: Out-of-sample Mean, Standard Deviation, Sharpe Ratio and Turnover in in Simulated
Data Set

(ε = 0%) (ε = 5%)
Classic Rob.Opt Mod.Rob Classic Rob.Opt Mod.Rob

γ = 1
Mean 0.0083 0.0082 0.0074 -0.0109 -0.0111 -0.0032
St.Dev 0.0616 0.0757 0.0740 0.0860 0.0814 0.0775
SR 0.1355 0.1084 0.1005 -0.1267 -0.1363 -0.0412
TO 1.9026 1.9472 1.9877 1.4971 1.5372 1.5114

γ = 10
Mean 0.0011 0.0005 0.0010 0.0073 0.0087 0.0091
St.Dev 0.0428 0.0448 0.0466 0.0512 0.0505 0.0511
SR 0.0259 0.0108 0.0226 0.1434 0.1716 0.1781
TO 1.0268 1.0644 1.1667 1.7832 1.5545 1.4054

γ = 100
Mean 0.0021 0.0018 0.0019 0.0067 0.0071 0.0074
St.Dev 0.0374 0.0376 0.0375 0.0437 0.0436 0.0445
SR 0.0562 0.0478 0.0506 0.1532 0.1631 0.1662
TO 1.1379 1.2442 1.2671 1.1836 1.1374 1.1834

γ = 1000
Mean 0.0049 0.0043 0.0041 0.0111 0.0109 0.0112
St.Dev 0.0365 0.0373 0.0380 0.0395 0.0396 0.0390
SR 0.1353 0.1165 0.1070 0.2811 0.2762 0.2877
TO 1.0179 1.1271 1.1728 1.1177 1.1124 1.0900

First, we analyzed out-of-sample performances when returns follow multi-
variate normal distribution (uncontaminated data). We could check that the
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all of out-of-sample performances (mean, standar deviation, Sharpe ratio and
turnover) of the classical portfolios are outperformed than those obtained with
robust portfolio policies. It is not surprising, because classical portfolios are
based on the sample mean vector and sample covariance matrix, which are the
maximum likelihood estimators (MLE) for normally distributed returns.

For instance, in case γ = 1, the Sharpe ratio of the classic (MV) portfolio is
0.1355 whereas the Sharpe ratio for Rob.Opt and Mod.Rob portfolio is 0.1084
and 0.1005, respectively. Moreover, the portfolio turnover of the classic method
is smaller than those of robust approaches in the majority of the specifications.
For instance, in the case = 1 the portfolio turnover of the classic portfolio was is
1.9026 whereas the portfolio turnovers of the Rob.Opt and Mod.Rob porfolios
are 1.9472 and 1.9877, respectively.

The average turnover measures the rate of trading activity across portfolio
assets. As such, it represents the percentage of portfolio that is bought and
sold in exchange for other assets. Clearly, the smaller the turnover, the smaller
the transaction costs associated to the implementation of the strategy.

Next, we examined the out-of-sample performances on the contaminated
data ( the proportions of outlier ε is equal to 5%). According to the out-of-
sample performances (i.e. mean, standard deviation, sharpe ratio and turnover),
we observed that Mod.Rob achieves higher out-of-sample means and Sharpe
ratio than Classic and Rob.Opt. Furthermore, the out-of-sample turnovers of
Mod.Rob are lower for all risk aversion scenarios compared to those of Classic
and Rob.Opt. In addition, portfolios generated using Mod.Rob deliver lower
risks for = 1 and 100. Overall, Mod.Rob portfolios lead to superior results com-
pared to the Classic and Rob.Opt approaches in the contaminated data. On
the contrary, under contamination, the Classical and Rob.Opt portfolios lead to
the worst out-of-sample performance. This is particularly worrying in finance,
where there is extensive evidence that the empirical return distributions often
depart from normality.

The conclusion is that when the sample distribution deviates even slightly
from the assumed distribution, the efficiency of classical estimators may dras-
tically decrease. Robust estimators, on the other hand, are not as efficient
as MLE when the underlying model is correct, but their properties are not
too sensitive to deviations from the assumed distribution. Hence, the pro-
posed modified robust portfolio optimization approach works effectively with
simulated datasets where the available observations depart from the normal-
ity assumption. Moreover, it can be noticed for all portfolios (see Table 1), by
comparing portfolio turnover values, that in most portfolios, increasing the risk
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aversion from 1 to 1000 has caused a decrease in these values.

To gain further meaningful insight, we also evaluated the stability of all
portfolios through the performance of portfolio weights. We produced a graph-
ical representation of the stability of different portfolio policies by using the
boxplots of portfolio weights. Each boxplot represents the variability of the
portfolio weight assigned to a particular asset by a particular policy. Clearly,
stable policies should have relatively compact (short) boxplots.

Figure 1 exhibits the portfolio weights on the uncontaminated data, while
Figure 2 shows the boxplot on the contaminated data. Each panel contains 10
boxplots corresponding to each of the ten assets. The ten assets are labeled
as 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10. The boxplots for the portfolio weights for
different values of γ are given per line, that is risk aversion parameter γ = 1
(the first row of the graphs), γ = 10 (the second row of the graphs), γ = 100
(the third row of the graphs) and γ = 1000 (the fourth row of the graphs).

Figure (1) and (2) confirm the analysis of the out-of-sample turnover for all
methods, that greater risk aversion will produce lower turnover value, meaning
that portfolio is more stable.
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Figure 1: Boxplot of Portfolio Weights on Uncontaminated Data (no outlier)
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Figure 2: Boxplot of Portfolio Weights on Contaminated Data (outlier)

252 Malaysian Journal of Mathematical Sciences



Robust Portfolio

Finally, the simulated data set allows us to explore how different portfolios
perform on those data when the asset returns deviate from normality. We have
explored this issue on a simulated data set containing 5% of returns deviating
from normality. This results are expected since classic portfolio and robust
portfolio optimization method considered in this paper depend on the use of
the same critical inputs i.e. the sample mean and the sample covariance ma-
trix, which are MLE under the assumption of normality. Considering that the
simulated data come from the contaminated data, the sample estimates are no
longer MLE and will carry more estimation error.

To sum up, if the return data follow a distribution M that deviates slightly
from the normal distribution, we could conclude that the Mod.Rob technique
leads to an improvement compared to the Classic and Rob.Opt approaches.
This improvement is possible due to the properties of robust estimators that
can reduce outliers in data.

5. Empirical Analysis

The research utilizes historical weekly rates of return from ten companies
from the Jakarta Stock Exchane (JSE), in January 2011 and Desember 2014
(207 observations). These rates of returns are presented in the scatterplots
given in Figure 3. The ten companies are AALI (Astra Agro Lestari Tbk),
ADHI (Adhi Karya Tbk), BBRI (Bank Rakyat Indonesia Tbk), BMRI (Bank
Mandiri Tbk), CTRA, GGRM (Gudang Garam Tbk), ICBP (Indofood CBP
Sukses Makmur Tbk), INDF(Indofood Sukses Makmur Tbk), INTP (Indoce-
ment Tunggal Prakasa Tbk) and MPPA (Matahari Putra Prima Tbk).

We noticed that some returns of the stocks have a few extreme returns (see
Table 3). As stated by Sumiyana (2007) who studied the behavior of stock price
variability in JSE, return variance in trading has differed significantly. These
extreme returns heavily bias the sample mean vector and covariance matrix,
and these outliers can lead to the assumption of normality of the data that is
not fulfilled.
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Figure 3: Scatter plot of logarithmic weekly returns of ten stocks
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In this section, we analyse a real example where the portfolios are gen-
erated according to the "rolling-horizon" procedure similar to the method in
the simulation study. Portfolio weights are estimated weekly using the last 90
weeks and rebalanced every week. In the sample there are 207 weekly returns,
so there are 117 rebalances. On the basis of the estimated weights, portfolio
returns are calculated - 117 out-of-sample weekly returns. Then, the resulting
rates of return are used to estimate the mean, standard deviation, sharpe ratio
and turnover.

Table 2: . Out-of-sample Mean, Standard Deviation, Sharpe Ratio and Turnover in Empirical
Data

Classic Rob.Opt Mod.Rob
γ = 1
mean 0.0040 0.0082 0.0127
St.Dev 0.0444 0.0620 0.0506
SR 0.0894 0.1317 0.2513
TO 1.6686 1.6481 1.5151

γ = 10
mean 0.0050 0.0062 0.0073
St.Dev 0.0378 0.0401 0.0327
SR 0.1318 0.1539 0.2217
TO 1.5585 1.5178 1.4427

γ = 100
Mean 0.0040 0.0040 0.0043
St.Dev 0.0303 0.0317 0.0303
SR 0.1326 0.1274 0.1419
TO 1.2157 1.3486 1.1613

γ = 1000
Mean 0.0039 0.0040 0.0041
St.dev 0.0311 0.0323 0.0308
SR 0.1248 0.1238 0.1331
TO 1.0779 1.2916 1.0906

Table (2) gives the out-of-sample performance for all the three portfolios in
the empirical data. We saw that the mean and Sharpe ratio of the Mod.Rob
portfolios are much larger than the Classic and Rob.Opt portfolios in all levels of
risk aversion criteria. In addition, the out-of-sample risks (mesured by standard
deviation) of our proposed model are lower compared to those of two portfolios.
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Also, we observed that out-of-sample turnovers of the Mod.Rob are lower than
the Classic and Mod.Rob in cases γ = 1 and 10. Meanwhile, when the risk
aversion increases ( i.e. γ = 100 and 1000) the performance of the out-of-sample
turnover of Classic is better than that of Rob.Opt and Mod.Opt.

Also, the out-of-sample evaluation results show that the performances of
the Rob.Opt portfolios proposed by Tütüncü and Koenig (2004) are not as
good as those of our proposed robust portfolios, but they are better than those
of the classic minimum-variance portfolios.

Next, we discussed the stability of the portfolio weights of different poli-
cies. Figure 4 gives the boxplots of the portfolio weights for all policies i.e.
MV portfolio (Classic), robust portfolio optimization (Rob.Opt) and modified
robust portfolio optimization (Mod.Rob). Each panel contains 10 boxplots cor-
responding to each of the ten assets. The ten assets are labeled as AALI = 1,
ADHI = 2, BBRI = 3, BMRI = 4, CTRA = 5, GGRM = 6, ICBP = 7, INDF
= 8, INTP = 9 and MPPA = 10. The boxplots for the portfolio weights for
different values of γ are given per line that is risk aversion parameter γ = 1
(the first row of the graphs), γ = 10 (the second row of the graphs), γ = 100
(the third row of the graphs) and γ = 1000 (the fourth row of the graphs).

Figure (4) confirms the analysis of the portfolio weights on the simulated
data, that the greater risk aversion will produce lower turnover value, meaning
that portfolio is more stable.

Based on our observation on the empirical data (when there are outliers
in the returns data), our out-of-sample evaluation results, however, show that
our proposed models (Mod.Rob) have substantially outperformed the Classic
and Rob.Opt portfolios. As argued previously, the reason for this is that the
estimates of the parameters (both sample mean vector and matrix covariance)
contain so many estimation errors that using them for portfolio selection is
likely to hamper the performance of the resulting portfolios. Also, we saw
among the robust approaches, the Mod.Rob approach clearly outperforms the
Rob.Opt strategy. This improvement is possible due to the properties of robust
estimators which are not influenced by the presence of outliers.
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Figure 4: Boxplot of Portfolio Weight in Real Data Market

Malaysian Journal of Mathematical Sciences 257



Supandi, et.al

6. Conclusions

In this paper, we extended the robust portfolio optimization approach of
Tütüncü and Koenig (2004) by incorporating robust estimators into a construc-
tion of the uncertainty sets of parameters. By doing this, our proposed model
(Mod.Rob) is capable of tackling extreme data (outliers) in the uncertainty sets
and, overall, leads to superior results over the Classic and Rob.Opt approaches
both in the simulated and empirical data. We found that the out-of-sample
portfolio risk of Mod.Rob is lower and accompanied by larger returns. Also, the
portfolio compositions are more stable and consequently attain lower turnover
compared to Classic and Rob.Opt approach.

The classic portfolio (MV) and original robust portfolio optimization ap-
proaches which use the same critical inputs i.e. the sample mean and the sample
covariance matrix tend to be too pessimistic, especially when there are extreme
returns in data set. Furthermore, the employed classical estimators (i.e. sample
mean vector and covariance matrix) need to rely on distributional assumptions.
Therefore both the Classic and Rob.Opt approaches exhibit the disadvantage
of limited effectiveness when there are extreme observations (outliers) in data
sets.

We found that the explicit incorporation of the robust estimators into the
robust optimization process leads overall to superior results over the Classic
and Rob.Opt approach, due to the properties of robust estimators which are
not influenced by the presence of outliers.
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